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Abstract 

The effect of the depth Zo of a stacking fault and the 
specimen thickness t on the displacement and split- 
ting of higher-order diffraction fringes has been 
observed experimentally by means of large-angle con- 
vergent-beam electron diffraction and simulated 
theoretically under the two-beam dynamical approxi- 
mation. Moreover, a quantitative relationship 
between the displacement and splitting of a diffrac- 
tion fringe on the one hand and the displacement 
vector R of the stacking fault, the specimen thickness 
t, and the diffraction-vector amplitude g on the other 
hand, was deduced in the thin-specimen approxima- 
tion when the fault lies at the midpoint of the speci- 
men (z0 = t/2). 

1. Introduction 

Carpenter & Spence (1982) first studied the splitting 
of higher-order Laue-zone (HOLZ) lines when the 
convergent-beam electron diffraction (CBED) probe 
was positioned approximately over an isolated 
straight dislocation. Fung (1985) studied the displace- 
ment and splitting of diffraction fringes in CBED 
patterns caused by transverse stacking faults in 
graphite and dislocations in silicon. Tanaka & 
Kaneyama (1986) and Tanaka, Terauchi & Kaneyama 
(1988) studied intensity profiles of both lower- and 
higher-order reflections using the large-angle CBED 
(LACBED) technique and two-beam approximation. 
The results show that diffraction fringes with a -- 2rrn 
(n =integer) are not affected by stacking faults 
whereas those with a = 2rr/3 (a = - 2 r r / 3 )  do split 
into several peaks of which the strongest peak lies at 
the position with w < 0 (w > 0). Wen, Wang & Fung 
(1987) calculated theoretical rocking curves for the 
+1010 and +2020 reflections of graphite containing 
a stacking fault using the two-beam dynamical 
approximation and arrived at a good agreement with 
Fung's experimental results. Recently, Chou, Zhao 
& Ko (1989) studied HOLZ-line effects of a stacking 
fault in a stainless steel both experimentally and 
theoretically. 
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Higher-order reflections possess greater extinction 
distances ~:~ and hence satisfy the so-called 'thin 
specimen approximation'. In addition, a stacking 
fault is the simplest defect for theoretical treatment. 
As the first step for the theoretical study of the effect 
of the defect on the displacement and splitting of 
diffraction fringes, we rearranged the analytical 
expressions for the transmitted intensity of a crystal 
containing a stacking fault in the two-beam case. Then 
a simple quantitative relationship between the dis- 
placement and splitting of a diffraction fringe on the 
one hand and the displacement vector R of the stack- 
ing fault, the diffraction vector g, its modulus g, and 
the specimen thickness t on the other hand, when the 
stacking fault lies at the midpoint of the specimen, 
was deduced under the thin-specimen approximation 
suitable for higher-order reflections. Moreover, in this 
work we observed experimentally the dependence of 
the displacement and splitting of higher-order reflec- 
tions on the fault depth Zo and the specimen thickness 
t using LACBED. There is good agreement between 
these observations and the theoretical calculations in 
this work. 

2. Experimental results 

1Crl8Ni9Ti austenitic stainless steel plates were 
thinned chemically in a solution of HNOa'HC1 = 
1 : 3 to a thickness of nearly 0.1 mm. From these plates 
transmission electron microscopy (TEM) specimens 
were prepared by means of twin-jet polishing in a 
solution of HCIO4" C2HsOH = 1 : 9. LACBED studies 
were carried out in a Philips EM 420 electron micro- 
scope. 

Figs. l (a) ,  (b) and (c) show [114] zone-axis Tanaka 
patterns at 100kV of the austenitic stainless steel 
specimen containing a stacking fault oblique to the 
specimen surface. The horizontal grey ribbons 
marked SF are shadow images of the stacking fault 
which intersects different areas of the [114] Tanaka 
pattern in these three figures. Fig. 1 (d) shows a simu- 
lated [ 114] zone-axis HOLZ line pattern of a perfect 
stainless steel, which possesses a vertical mirror line. 
Such mirror symmetry is lost in (a), (b) and (c) where 
the intersecting point of the 913 and 1§3 lines is 
shifted to the right-hand side of the mirror line. From 
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the conventional trace analysis the displacement vec- 
tor R of this stacking fault was determined to be 
][ 111 ] and the specimen thickness t has a mean value 
of about 70 nm. 

When crossing the shadow image of the stacking 
fault, each HOLZ line becomes wider, then splits into 
two lines whose separation increases and arrives at 
a maximum at the midpoint of the shadow image of 
the stacking fault. This widening and splitting 
behaviour is symmetrical about the midpoint of the 
shadow image. Such behaviour corresponds exactly 
to the dependence of the widening and splitting of 
HOLZ lines on the fault depth Zo. 

The widths of the shadow images in Figs. 1 (a),  
(b) and (c) decrease from the left-hand side to the 
right-hand side, which means a decrease of the speci- 
men thickness t. In (a),  the separation of the split 
391 line is greater than that of the 931 line, whereas 

- -  m 

the separation of the split 391 line is smaller than 
that of the 931 line in (c). This means that the separ- 
ation of a split HOLZ line caused by a stacking fault 
increases with a decrease of the specimen thickness t. 

3. Theoretical calculations 

Describing the influence of crystal defects on the 
diffraction intensity by three parameters q, ap and 

jllll  
,i 

Fig. 1. [114] zone-axis Tanaka patterns at 100 kV of an austenitic 
stainless steel containing a stacking fault. (a), (b), (c) Experi- 
mental patterns with shadow images of the stacking fault 
(marked SF). (d) Simulated HOLZ-line pattern. 

aq, we can write the transmitted intensity IT as 
(Katerbau, 1981; Wen, Wang & Fung 1987) 

with 

Ir=exp(-2zrt/~)(T~+ T2+ T3) (1) 

l - q 2 {  [ "rr(t+2t~) ] 
T , - 1 +  w2 1 + s inh2/~ :~ i+~-~- /2  j 

sinE[ '1rt(l+w2)'/2 ] }  
- + ap 

{ { T2-  1 + w 2 sinh2 \ sc~i -~  w--~/2,] 

+sin2[ rr(t-2z°)(l+w2)'/2 ] }  
~g -- ag 

7"3 = q(1 - q2),/2 { [' 2"n'(~ +Zo)'~ 
l + w  2 sinhk~'g(l+w2)l/2] 

E 2~( t  - Zo)(1 + w2) i/2 
X COS ~g ~ Ofp - -  

r2 (t.+,-zo)l -sinh L  iYw S J 
[ 2~rz°(l+w2)'/2 ] }  

× COS ~g -F Otp + Otq 

(2) 

(3) 

%] 

(4) 

and 

with 

otq = mTr/2 (8) 

a = 2 ~ g .  R 

m =s in  (a /2 ) / l s in  (a/2)l .  

From the expressions described above it is con- 
cluded that (1)-(4) reduce to the expressions for a 
perfect crystal when a =2~-n (n = integer), which 
agrees with Fung's observation. Another conclusion 
is that the transmitted rocking curves for the fault 
depths Zo and t -Zo  are the same. This conclusion is 
in good agreement with the observed symmetry of 
the behaviour of the displacement and splitting of a 
HOLZ line about the midpoint of the specimen. In 

q = Is in  (a12)ll(1 + w2) '/2 (6) 
ap  = t a n  - l  {[wl(l+w2)'/2]tan(a/2)} ( 7 )  

For the case of a single stacking fault with a displace- 
ment vector R we have 

w=sinh[2~rtw/~'s(l+w2)~/2]. (5) 

where ~ denotes the mean absorption length, ~ the 
anomalous absorption length, w = s~s the dimension- 
less deviation parameter with s = gAO and A0 being 
the deviation from the Bragg condition for the 
reciprocal vector g. w is replaced in some cases by a 
characteristic thickness tw given by 
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the following some results for stainless steel calcu- 
lated from expressions mentioned above are reported. 

Fig. 2 shows the transmitted intensity lr as a 
function of the deviation angle A0 from the Bragg 
condition for different specimen thicknesses t when 
the stacking fault lies at the midpoint of the TEM 
specimen (Zo=t/2) and g=391 ,  R = [ l l l ] / 3 ,  ~:g= 
310 nm (at 100 kV) and ¢g/¢'g = 0.05. Fig. 3 shows the 
transmitted intensity I r  as a function of A0 for 
different higher-order reflections g when Zo = t/2 = 
50nm, R = [ l l l ] / 3 ,  ~ g / ~ = 0 . 1 0 ,  and ~ =  183, 340 
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Fig. 2. Calculated transmitted intensity as a function of  the devi- 
ation angle zl0 for different specimen thicknesses t when z o = t/2, 
g=391 ,  R =  1/3[111], ~ = 310 nm (at 100 kV) and ~:~/~:~ =0.05.  
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Fig. 3. Calculated transmitted intensity as a function of  the devi- 
ation angle A0 for different reflections g when Zo = t/2 = 50 nm, 
R = [ l l l ] / 3 ,  ~/SCg = 0.10, and ~:g = 183, 340 and 454nm for the 
117,680 and 6,10,0 reflections respectively. 

and 454 nm for the 117, 680 and 6,10,0 reflections 
respectively. From similar calculations it is found that 
when Zo = t/2 and t -< ~:g/2, each higher-order diffrac- 
tion fringe is split into two fringes, one stronger (at 
A0]) and the other weaker (at a02). These two peaks 
lie at opposite sides of the Bragg position (A0]/A02 < 
0). For the i17 and 6,10,0 reflections, a = 2rr/3 > 0, 
the stronger peak lies on the side with A0~<0, 
whereas for the 391 and 680 reflections we have 
ce = -27r /3  < 0 and the stronger peak on the side with 
A0~ > 0. The displacement amounts A0] and a02 of 
these two peaks and their separation A0 = ]a0] -/102] 
are all inversely proportional to the product of the 
specimen thickness t and the modulus g of the diffrac- 
tion vector. These conclusions coincide with our 
experiment and the results obtained by Fung (1985), 
Tanaka & Kaneyama (1986) and Tanaka, Terauchi 
& Kaneyama (1988). 

Fig. 4 shows the calculated variation of the dis- 
placement and splitting of the 391 diffraction fringe 
with the fault depth Zo when t = 8 0 n m ,  R = [ l l l ] / 3 ,  
~:g =310 nm (at 100 kV) and ~:g/£~=0-05. Owing to 
the symmetry property of the transmitted rocking 
curve about the midpoint of the specimen, we need 
only vary the value of Zo/t from 0 to 1/2. It is found 
from Fig. 4 and similar calculations for t = 40-200 nm 
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Fig. 4. Calculated variation of  the displacement and splitting of  _ - -  

the 391 diffraction fringe with the fault depth z o when t = 80 nm, 
R = [ l l l ] / 3 ,  ~ = 3 1 0 n m  (at 100kV), ~J~'~ =0.05.  
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that the diffraction fringe is not affected by the stack- 
ing fault lying at the specimen surface (zo/t = 0) and 
appears as a dark peak (HOLZ line). This line 
becomes wider with the increase of fault depth Zo, 
begins to split at Zo/t ~- 1/4 and arrives at maximum 
separation at zo/t = 1/2. The variation of calculated 
391 HOLZ-line positions expressed as gtAO~ and 
gtzl02 with Zo/t are shown schematically in Fig. 5 with 
R = [ l l l ] / 3 ,  t =  100 nm, ~:g =310nm (at 100kV) and 
~ g / ~ g = 0 " 1 0 .  The agreement between Fig. 5 and 
HOLZ lines in Figs. l (a) ,  (b) and (c) is very good. 

4. Thin-specimen approximation 

For higher-order reflections the condition t < £g/2 is 
usually fulfilled. When Iwl> 1, then Itwl_>~g/5, and 
hence t.< [tw[. Under these conditions the sinh terms 
in (2) and (4) can be replaced simply by w owing to 
(5). In this case, when w2>>1 and Zo/t=l/2,  
expressions (1)-(4) are simplified to 

17- = 1 - ( 1 / w 2 ) [ s i n  2 ( a / 2 ) -  2 sin ( a / 2 )  

xsin ('rrtgAO+ a/2)+sin 2 ('rrtgAO+ a/2)]. (9) 

From this expression it is found that, for a = +27r/3, 
the positions at which 17- reaches at a minimum value 
are determined mainly by (1/w 2) sin (¢rtgzaO+a/2). 
The last term has only the effect of varying the 
minimum value. Therefore, the w, s or A0 values at 

which I r  reaches a minimum are just the w, s or za0 
values at which (1/w2) sin(TrtgAO+a/2) reach 
extrema. These values are determined by the equation 

tan(TrtgAO+a/2)=(1/2)TrtgAO. (10) 

For a = m2w/3 the first two A0 values corresponding 
to the first two split HOLZ lines are obtained numeri- 
cally as 

d01 (rad) = -0-564m/(gt )  ( 11 ) 

A02(rad) = 0.984m/(gt). (12) 

They possess opposite signs and have a ratio 

A02/A01 = -1  "74 (13) 

and their separation is 

A0(rad) = [A0, -  A021 = 1.548/gt. (14) 

Owing to the steep attenuation factor 1/w 2 the peak 
which lies mostly adjacent to the Bragg position, i.e. 
the peak at A01, has larger intensity than the next 
peak at Z102. Other peaks have too small intensity 
and may be omitted. All these conclusions are in good 
agreement both with the simulated results shown in 
Figs. 2 and 3 and the experimental observations 
shown in Figs. 1 (a), (b) and (e) of this paper, and 
obtained by Fung (1985), Tanaka & Kaneyama 
(1986), Chou, Zhao & Ko (1988) and Tanaka, 
Terauchi & Kaneyama (1988). 
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Fig. 5. Variation of simulated 391 HOLZ-line positions expressed 
as gtAO~ and gtAO 2 with Zo/t when R=[111]/3, t=100nm,  
~g=310nm (at 100kV) and ~g/~:~ =0.10. 

References 

CARPENTER, R. W. ~ SPENCE, J. C. H. (1982). Acta Cryst. A38, 
55-61. 

CHOU, C. T., ZHAO, L. T. & Ko, T. (1989). In preparation. 
FUNG, K. K. (1985). Ultramicroscopy, 17, 81-86. 
KATERBAU, K.-H. (1981). Philos. Mag. A43, 409-426. 
TANAKA, M. & KANEYAMA, T. (1986). Proc Xlth Int. Congr. 

Electron Microsc., Kyoto, Japan, 1986, pp. 203-206. 
TANAKA, M., TERAUCHI, M. & KANEYAMA, T. (1988). Conver- 

gent-Beam Electron Diffraction. Tokyo: JEOL-Maruzen. 
WEN, J., WANG, R. St. FUNG, K. K. (1987). Proc. 4th Chin.-Jpn 

Electron Microsc. Seminar. 


